Live your Optimal Weight

Can’t Remember? Is Your Protein Bent?

READERS SUMMARY: 1. Alzheimer's disease is due to lack of electrons which causes compliant design changes in protein phosphatase! 2. Why are the incidence and prevalence growing for AD? 3. What is a proteopathy? 4. Why is protein folding so critical to so many diseases? 5. What kind of nutrition guidelines do I follow to [...]

My Leptin Prescription

I have been asked by many to put a short post out about how I reverse Leptin resistance in my own clinic for my patients. After reading all of the comments left here, at MDA, and on Jimmy Moore's forum, I decided that it was a good idea. 1. First make sure you really are Leptin resistant (LR) to begin with. The easiest way to do this if you are heavy is to look in the mirror. If you're overweight you definitely are Leptin resistant. If you still have a large appetite and crave carbohydrates, especially at night, these are also signs that you are likely Leptin resistant. If you are fit or in decent shape and not sure based upon the above symptoms, I would tell you to go get a blood test and check your reverse T3. It will be elevated. I also recommend simultaneously checking a salivary cortisol level. With LR, you will always see higher cortisol levels later in the day. 2. To regain Leptin Sensitivity (LS) follow a strict Epi-Paleolithic diet. To see an outline of a strict Epi-Paleolithic diet, read Brain Gut 6: Epi-Paleo Rx. The type of fuel you eat is important initially in eliminating the foods that cause Leptin receptors to become nonfunctional.

WHY DO WE SLEEP?

READERS SUMMARY: 1. Why do we sleep? 2. Does sleep control metabolism and cell growth? 3. Do all living things sleep? How long is too long or too little? 4. What are the stages of sleep? 5. Can sleep help prevent degenerative aging diseases and cancer? 6. Is sleep the primordial condition or did it evolve as we did?   Why do [...]

Dancing Between Purity and Pollution

Mitochondria can allow life or kill us. Mitochondrial DNA has only 37 genes. From those 37 genes comes just 13 proteins. Those 13 proteins code for the electron chain transport complexes. The remainder of the genes code for tRNA. Mitochondria also cant grow outside the cell. They require the 30,000 genes in the nucleus to make up another 1500 proteins for them to function. Mitochondrial DNA and nuclear DNA have to have precise lock and key fit to generate energy production. If not, the cell eliminates itself by apoptosis (levee 19) fast. If It works well, this combination is naturally selected for future cell division to generate energy. Aging is quantified by how "leaky" our mitochondria are to free radicals at complex ones in electron chain transport. Their own DNA is adjacent to the first complex in electron chain transport. So the more leakage, the more damage is done to its DNA and energy production will fall. Moreover, that is the signal to make more mitochondria or undergo cell suicide! This first complex (NADH) is by far the most leaky to free radicals of all the complexes. This paradox of fate caused evolution to select for 10-20 copies of mitochondrial DNA in each cell to sustain energy production of an organ in question. So mitochondria can breathe life into us and end it based upon how many good mitochondria we have in a tissue.

Why Does Heart Disease Really Occur?

Let me begin by saying, I think western medicine is ideal for acute diseases. I know this is a dogmatic statement to lead with, but I believe this to be true. And those diseases are the ones that shortened our lifespans most in the first half of the 20th century. Most people I talk with always want to know why I think medicine has missed the boat with respect to chronic diseases? I have thought long and hard about this one and I think I have arrived at my reason. Healthcare, up until the 1940′s, was done anecdotally and by empiric observation. In the 1940′s, the government saw some statistics that showed close to 40{a7b724a0454d92c70890dedf5ec22a026af4df067c7b55aa6009b4d34d5da3c6} of the deaths in the US were caused by heart disease or stroke. It also appeared that the numbers were accelerating and not slowing down. The real reason they became interested is that no one knew why this was happening. So they decided to study this problem with a long term observational population study that began in 1948. That study was the Framingham Heart study. The bible has the book of Genesis, and physics has Einstein’s theory of relativity and Framingham is medicine’s raison d’etre.

Hormones 101: Clinical thoughts revealed

Readers Summary Why I use highly sensitive C-reactive protein (CRP) and Vitamin D as biomarker proxies. After Leptin, Cortisol is the next most important domino to fall. Hormone Cascade explained in a paragraph. Unintended consequences of hypercortisolism destroy health. Initial HS-CRP signals the genesis of underlying hormonal disruption (First sign Leptin is toast). Now [...]

Why is Oprah Still Obese? Leptin Part 3

Now, we know definitely that Leptin controls all energy production by regulating all the hormones in the body. But, do you wonder what happens when that regulation goes awry in the muscles? Well, here is some information about one part of how Leptin works to keep us fit when your body is sensitive to it. When Leptin was discovered in 1994, no one really had a clue as to its many functions. One function that was particularly murky was how the brain controlled peripheral energy utilization and optimized it. It is awfully hard to realize that the hypothalamus (size of a pea) can control the need for fuel of 20 trillion cells in the human body. Well in the last few years, scientists found out about uncoupling proteins (UCP). So far five have been discovered in mammals. The one we will discuss today is UCP3. This protein, UCP3, allows Leptin to work inside of peripheral cells like the muscle cell. For UCP3 to work optimally, it requires optimal functioning of Leptin and thyroid hormone simultaneously. In muscle cells, UCP3 is the dominant UCP in humans. So it is vital to maximizing efficiency in exercise and energy use. What UCP3 allows the muscle to do, is to shift out of regular oxidative energy production done at the mitochondria and making energy in the form of ATP, and into making pure heat without generating ATP. This biochemical action decreases ROS (levee 3) at the mitochondrial level, decreasing cellular stress. And therefore the energy is dissipated mostly as heat. Another protein, UCP1, is dedicated to doing this same action when it is activated 100{a7b724a0454d92c70890dedf5ec22a026af4df067c7b55aa6009b4d34d5da3c6} of the time.

Go to Top